Learning a functional control for high-frequency finance

نویسندگان

چکیده

We use a deep neural network to generate controllers for optimal trading on high-frequency data. For the first time, learns mapping between preferences of trader, i.e. risk aversion parameters, and controls. An important challenge in learning this is that, intra-day trading, trader's actions influence price dynamics closed loop via market impact. The exploration–exploitation tradeoff generated by efficient execution addressed tuning ensure long enough trajectories are produced during phase. issue scarcity financial data solved transfer learning: trained thanks Monte-Carlo scheme, leading good initialization before training historical trajectories. Moreover, answer genuine requests regulators explainability machine controls, we project obtained ‘blackbox controls’ space usually spanned closed-form solution stylized problem, transparent structure. more realistic loss functions that have no solution, show average distance controls their explainable version remains small. This opens door acceptance ML-generated regulators.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral Analysis of High-Frequency Finance

Popular across a wide range of fields, spectral analysis is a powerful technique for studying the behavior of complex systems. It decomposes a signal into many different periodic components, each associated with a specific cycle length. We argue that the application of spectral analysis to finance leads to natural interpretations in terms of horizon-specific behaviors. A spectral framework prov...

متن کامل

The Event Calculus on High-frequency Finance

Edward Tsang has a first degree in Business Administration (Major in Finance) and a PhD in Computer Science. He has broad interest in applied artificial intelligence, in particularly computational finance, heuristic search, constraint satisfaction and scheduling. He is currently a professor in computer science at the University of Essex where he leads the Computational Finance Group and Constra...

متن کامل

Dependence Structures for Multivariate High–Frequency Data in Finance

Stylised facts for univariate high–frequency data in finance are well–known. They include scaling behaviour, volatility clustering, heavy tails, and seasonalities. The multivariate problem, however, has scarcely been addressed up to now. In this paper, bivariate series of high–frequency FX spot data for major FX markets are investigated. First, as an indispensable prerequisite for further analy...

متن کامل

Dynamic copula models for multivariate high-frequency data in finance

The stylized facts of univariate high-frequency data in finance are well known; see Dacorogna et al. (2001). In Breymann et al. (2003) we analyzed bivariate high frequency forex data as a function of the sampling frequency, however treating the data as iid. In the present paper, using the data from Breymann et al. (2003), we model the dynamics as GARCH type processes and investigate the stylize...

متن کامل

emittance control in high power linacs

چکیده این پایان نامه به بررسی اثر سیم پیچ مغناطیسی و کاوه یِ خوشه گر با بسامد رادیویی بر هاله و بیرونگراییِ باریکه هایِ پیوسته و خوشه ایِ ذرات باردار در شتابدهنده های خطیِ یونی، پروتونی با جریان بالا می پردازد و راه حل هایی برای بهینه نگهداشتن این کمیتها ارایه می دهد. بیرونگرایی یکی از کمیتهای اساسی باریکه هایِ ذرات باردار در شتابدهنده ها است که تاثیر قابل توجهی بر قیمت، هزینه و کاراییِ هر شتابدهند...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Quantitative Finance

سال: 2022

ISSN: ['1469-7696', '1469-7688']

DOI: https://doi.org/10.1080/14697688.2022.2106885